102 research outputs found

    Design and implementation of a digital neural processor for detection applications

    Get PDF
    The main focus of this research is to develop a digital neural network (processor) and hardware (VLSI) implementation of the same for detection applications, for example in the distance protection of power transmission lines. Using a hardware neural processor will improve the protection system performance over software implementations in terms of speed of operation, response time for faults etc. The main aspects of this research are software design, performance analysis, hardware design and hardware implementation of the digital neural processor. The software design is carried out by developing an object oriented neural network simulator with backpropagation training using C++ language. A preliminary analysis shows that the inputs to the neural network need to be preprocessed. Two filters have been developed for this purpose, based on the analysis of the training data available. The performance analysis involves studying quantization effects (determination of precision requirements) in the network. -- The hardware design involves design of the neural network and the preprocessors. The neural processor consists of three types of processing elements (neurons): input, hidden and output neurons. The input neurons form the input layer of the processor which receive input from the preprocessors. The input layer can be configured to directly receive external input by changing the mode of operation. The output layer gives the signal to the relay for tripping the line under fault. Each neuron consists of datapath and local control unit. Datapath consists of the components for forward and backward passes of the processor and the register file. The local control unit controls the flow of data within a neuron and co-ordinates with the global control unit which controls the flow of data between layers. The neurons and the layers are pipelined for improving the throughput of the processor. The neural processor and the filters are implemented in VLSI using hardware description language (VHDL) and Synopsys / Cadence CAD tools. All the components are individually verified and tested for their functionality and implemented using 0.5 μ CMOS technology

    Structure and Magnetism of Mn5Ge3 Nanoparticles

    Get PDF
    In this work, we investigated the magnetic and structural properties of isolated Mn5Ge3 nanoparticles prepared by the cluster-beam deposition technique. Particles with sizes between 7.2 and 12.6 nm were produced by varying the argon pressure and power in the cluster gun. X-ray diffraction (XRD)and selected area diffraction (SAD) measurements show that the nanoparticles crystallize in the hexagonal Mn5Si3-type crystal structure, which is also the structure of bulk Mn5Ge3. The temperature dependence of the magnetization shows that the as-made particles are ferromagnetic at room temperature and have slightly different Curie temperatures. Hysteresis-loop measurements show that the saturation magnetization of the nanoparticles increases significantly with particle size, varying from 31 kA/m to 172 kA/m when the particle size increases from 7.2 to 12.6 nm. The magnetocrystalline anisotropy constant K at 50 K, determined by fitting the high-field magnetization data to the law of approach to saturation, also increases with particle size, from 0.4 × 105 J/m3 to 2.9 × 105 J/m3 for the respective sizes. This trend is mirrored by the coercivity at 50 K, which increases from 0.04 T to 0.13 T. A possible explanation for the magnetization trend is a radial Ge concentration gradient

    Anticancer Activity of Bee Venom against Lung Cancer Cell Line (A549 Cells) Enhanced by Iron Oxide Nanoparticles Synthesized from Syzygium Aromaticum

    Get PDF
    Iron oxide nanoparticles were synthesized using aqueous extracts of Syzygium aromaticum. Total phenolic content and iron oxide nanoparticles were found to increasing with concentration of extract and had higher antioxidant activity. The UV-Visible spectral analysis showed absorption peaks at 240 nm. SEM image of nanoparticles revealed that they were aggregated and had irregular shape. The signals obtained in EDAX spectrum imply that particles synthesized were iron oxide nanoparticles. The FT-IR spectrum revealed that nanoparticles which is capped by C-H group of alkane. The average size of nanoparticles was 52 nm. The nanoparticles were mixed with bee venom in various ratios to enhance anticancer activity and were identified as 1:1. MTT assay of 1:1 volume ratio of iron oxide nanoparticles and bee venom was found to have cytotoxicity higher than absence of nanoparticles. It confirmed the enhancement of anticancer activity by iron oxide nanoparticles of clove extract. Keywords: Syzygium aromaticum; Green synthesis; Iron oxide nanoparticles; Bee venom; Anticancer activity

    Structure and Magnetism of Co2Ge Nanoparticles

    Get PDF
    The structural and magnetic properties of Co2Ge nanoparticles (NPs) prepared by the cluster-beam deposition (CBD) technique have been investigated. As-made particles with an average size of 5.5 nm exhibit a mixture of hexagonal and orthorhombic crystal structures. Thermomagnetic measurements showed that the as-made particles are superparamagnetic at room temperature with a blocking temperature (TB) of 20 K. When the particles are annealed at 823 K for 12 h, their size is increased to 13 nm and they develop a new orthorhombic crystal structure, with a Curie temperature (TC) of 815 K. This is drastically different from bulk, which are ferromagnetic at cryogenic temperatures only. X-ray diffraction (XRD) measurements suggest the formation of a new Co-rich orthorhombic phase (OP) with slightly increased c/a ratio in the annealed particles and this is believed to be the reason for the drastic change in their magnetic properties

    Structure and Magnetism of Mn5Ge3 Nanoparticles

    Get PDF
    In this work, we investigated the magnetic and structural properties of isolated Mn5Ge3 nanoparticles prepared by the cluster-beam deposition technique. Particles with sizes between 7.2 and 12.6 nm were produced by varying the argon pressure and power in the cluster gun. X-ray diffraction (XRD)and selected area diffraction (SAD) measurements show that the nanoparticles crystallize in the hexagonal Mn5Si3-type crystal structure, which is also the structure of bulk Mn5Ge3. The temperature dependence of the magnetization shows that the as-made particles are ferromagnetic at room temperature and have slightly different Curie temperatures. Hysteresis-loop measurements show that the saturation magnetization of the nanoparticles increases significantly with particle size, varying from 31 kA/m to 172 kA/m when the particle size increases from 7.2 to 12.6 nm. The magnetocrystalline anisotropy constant K at 50 K, determined by fitting the high-field magnetization data to the law of approach to saturation, also increases with particle size, from 0.4 x 105 J/m3 to 2.9 x 105 J/m3 for the respective sizes. This trend is mirrored by the coercivity at 50 K, which increases from 0.04 T to 0.13 T. A possible explanation for the magnetization trend is a radial Ge concentration gradient

    Structure and Magnetism of Mn5Ge3 Nanoparticles

    Get PDF
    In this work, we investigated the magnetic and structural properties of isolated Mn5Ge3 nanoparticles prepared by the cluster-beam deposition technique. Particles with sizes between 7.2 and 12.6 nm were produced by varying the argon pressure and power in the cluster gun. X-ray diffraction (XRD)and selected area diffraction (SAD) measurements show that the nanoparticles crystallize in the hexagonal Mn5Si3-type crystal structure, which is also the structure of bulk Mn5Ge3. The temperature dependence of the magnetization shows that the as-made particles are ferromagnetic at room temperature and have slightly different Curie temperatures. Hysteresis-loop measurements show that the saturation magnetization of the nanoparticles increases significantly with particle size, varying from 31 kA/m to 172 kA/m when the particle size increases from 7.2 to 12.6 nm. The magnetocrystalline anisotropy constant K at 50 K, determined by fitting the high-field magnetization data to the law of approach to saturation, also increases with particle size, from 0.4 × 105 J/m3 to 2.9 × 105 J/m3 for the respective sizes. This trend is mirrored by the coercivity at 50 K, which increases from 0.04 T to 0.13 T. A possible explanation for the magnetization trend is a radial Ge concentration gradient

    Magnetic and electron transport properties of Co\u3csub\u3e2\u3c/sub\u3eSi nanomagnets

    Get PDF
    Magnetotransport and ferromagnetism in thin films of Co2Si nanoclusters are investigated experimentally and theoretically. The nanoclusters are fabricated by an inert-gas condensation-type cluster-deposition method and have an average size of 11.3 nm. Unlike the bulk Co2Si that exhibits a very weak net magnetic moment only below 10 K, the nanoclusters exhibit room-temperature ferromagnetism with a substantial saturation magnetization. Key features of the system are its closeness to the Stoner transition, magnetic moments induced by spin polarization starting from surface atoms, and nonuniaxial anisotropy associated with the orthorhombic crystal structure of Co2Si. A method is introduced to determine the effective anisotropy using the experimental magnetization data of this complex system and its relationship with the two lowest-order nonuniaxial anisotropy constants. On decreasing temperature from 300 K, the nanoclusters show electron-transport properties unusual for a ferromagnetic metal, including an increase of Hall resistivity and a nonmonotonic change of negative magnetoresistance with a peak at around 100 K. The underlying physics is explained on the basis of the large polarization of surface spins and variation in the degree of their misalignments due to temperature-dependent effective anisotropy

    Anisotropy and orbital moment in Sm-Co permanent magnets

    Get PDF
    Structural and magnetic properties of iron-free and iron-substituted SmCo5 have been investigated theoretically and experimentally. The nanocrystalline ribbons of SmCo5−xFex(0≤x≤2), which were produced by rapid solidification, crystallize in the hexagonal CaCu5 structure for x≤0.75. Small Fe additions (x=0.25) substantially improve the coercivity, from 0.45 to 2.70 T, which we interpret as combined intrinsic and extrinsic effect. Most of our findings are consistent with past samarium-cobalt research, but some are at odds with findings that have seemingly been well established through decades of rare-earth transition-metal research. In particular, our local spin-density approximation with Hubbard parameter calculations indicate that the electronic structure of the Sm atoms violates Hund\u27s rules and that the orbital moment is strongly quenched. Possible reasons for the apparent disagreement between theory and experiment are discussed. We explicitly determine the dependence of the Sm 4f charge distribution, arguing that an accurate density-functional description of SmCo5 is a challenge to future research

    Anisotropy and orbital moment in Sm-Co permanent magnets

    Get PDF
    Structural and magnetic properties of iron-free and iron-substituted SmCo5 have been investigated theoretically and experimentally. The nanocrystalline ribbons of SmCo5−xFex (0 [] x [] 2), which were produced by rapid solidification, crystallize in the hexagonal CaCu5 structure for x [] 0.75. Small Fe additions (x = 0.25) substantially improve the coercivity, from 0.45 to 2.70 T, which we interpret as combined intrinsic and extrinsic effect. Most of our findings are consistent with past samarium-cobalt research, but some are at odds with findings that have seemingly been well established through decades of rare-earth transition-metal research. In particular, our local spin-density approximation with Hubbard parameter calculations indicate that the electronic structure of the Sm atoms violates Hund’s rules and that the orbital moment is strongly quenched. Possible reasons for the apparent disagreement between theory and experiment are discussed. We explicitly determine the dependence of the Sm 4ƒ charge distribution, arguing that an accurate density-functional description of SmCo5 is a challenge to future research
    • …
    corecore